Electric Circuits

By
Prof. Dr. Mousa Abd-Allah
Dr. Ayman Yousef
Dr. Amr Ameen

Contents

y CH1: Sinusoids, Phasors and resonance
ÿ CH2: Sinusoidal steady-State Analysis
ÿ CH3: AC Power Analysis
y CH4: Three Phase Circuits
y CH5: Transient Response of Circuits
y CH6: Fourier Analysis and Circuit Applications
y CH7: Two-Port Circuits

References

q MaЋmood Nafvi, gosep爪 A. Edminister, "Electric Circuits", Schaum's Outlines, Mc Graw Hill. ISBN: 9780071633727, 2011.
q Iames \mathcal{W}. \mathcal{A} ilsson, Susan \mathcal{A}. Riedel, "Electric Circuits", Prentice Hall, New Jersey, ISBN:9780137050512-0137050518, 2011.
a I hon Bird, "Electrical Theory and Technology", Elsevier, Oxford, ISBN:9780080549798-0080549799, 2007.

Alternating (AC) Sinusoidal

Wave forms

Period of a Waveform

। Period (T): The time interval between successive repetitions of a periodic waveform (time required for completing one full cycle).

I One period occupies exactly 360° of a sine waveform.

। Cycle: The portion of a waveform contained in one period of time.

Alternating (AC) Sinusoidal Waveforms

Frequency of a Waveform

I Frequency (f): The number of cycles that occur in 1 sec (number of cycles that is completed each second.)

$f=1 / T$

I This figure shows four cycles per second, or a waveform that has a frequency of 4 Hz .
Sinusoids

ÿ A SINUSOID is a signal that has the form of the sine or cosine function.

$$
v(t)=V_{m} \sin \omega t
$$

- V_{m} is the Peak Amplitude of the sinusoid.
- ω is the Angular Frequency (Angular Velocity) in radians/s.
- f is the Frequency in Hertz. T is the period in seconds.

$$
\omega=2 \pi f \quad \text { and } \quad f=1 / T
$$

$$
T=\frac{2 \pi}{\omega}
$$

Instantaneous Value of a Wave

Instantaneous value: The magnitude of a waveform at any instant of time; denoted by the lowercase letters ($v 1, v 2$).

Peak amplitude: The maximum value of the waveform as measured from reference horizontal line (the greater value of Instantaneous value), denoted by the uppercase letters $V \mathrm{~m}$.

$$
v(t)=V / \mathrm{m} \cos \left(\omega t+\varphi_{\mathrm{v}}\right)
$$

where φ_{v} is the phase angle

Phase of Sinusoids

। OA represents a vector that is free to rotate anticlockwise about 0 at an angular velocity of $\omega \mathrm{rad} / \mathrm{s}$. A rotating vector is known as a phasor.

I Any quantity which varies sinusoidally can thus be represented as a phasor.

Rotating of single phasor

Rotating of Two priasors

Prase of Sinusoids

$$
f=\frac{1}{T} H z \quad \omega=2 \pi f
$$

ÿ Only two sinusoidal values with the same frequency can be compared by their amplitude and phase difference.
\ddot{y} If phase difference is zero, they are in phase; if phase difference is not zero, they are out of phase.

Prase of Sinusoids

\ddot{y} The terms lead and lag are used to indicate the relationship between two sinusoidal waveforms of the same frequency plotted on the same set of axes.

ÿThe cosine curve is said to lead the sine curve by 90°.
\ddot{y} The sine curve is said to lag the cosine curve by 90°.
$\ddot{y} 90$ is referred to as the phase angle between the two waveforms.
ÿ When determining the phase measurement we first note that each sinusoidal function has the same frequency, permitting the use of either waveform to determine the period.
ÿ Since the full period represents a cycle of 360°.

Prase of Sinusoids

ÿ Consider the sinusoidal voltage having phase φ,

$$
\begin{gathered}
v_{1}(t)=V_{m} \sin \omega t \\
v_{2}(t)=V_{m} \sin (\omega t+\phi)
\end{gathered}
$$

- v_{2} LEADS v_{1} by phase φ.
- v_{1} LAGS v_{2} by phase φ.
- v_{1} and v_{2} are out of phase.

Average Value of a Wave

Suppose a time-varying function $f(t)$ is defined on the interval $a \leq t \leq b$. The area A, under the graph of $f(t)$ is given by the integral

area of rectangle $=$ area under curve
average or mean value of the function

$$
h=\frac{1}{b-a} \int_{a}^{b} f(t) \mathrm{d} t
$$

Average Value of Sine Wave

$$
V_{a v}=\frac{1}{T} \int_{0}^{T} v(t) d t
$$

The average value of only half a cycle of the Sine wave is given by:

$$
V_{a v}=\frac{1}{T / 2} \int_{0}^{T / 2} v(t) d t=\frac{1}{T / 2} \int_{0}^{T / 2} V_{m} \sin \left(\omega t+\theta_{v}\right) d t=\frac{2}{\pi} V_{m}=0.637 V_{m}
$$

The average value of the full cycle of the wave will be zero because the sine wave symmetrical about zero.

$$
\begin{gathered}
\text { Root-mean-square value } \\
\text { of sin wave }
\end{gathered}
$$

I The R.M.S. (or effective) value of an alternating voltage or current (AC) is the value which would produce the same amount of heat energy in a resistor as a direct voltage or current (DC) of the same magnitude.

$$
\begin{equation*}
v(t)=V_{m} \sin \omega t \quad V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t)} d t \tag{1}
\end{equation*}
$$

$$
V_{m s}=\frac{V_{m}}{\sqrt{2}} \quad V_{r m s}=0.707 V_{m}
$$

Ex.1: Find the amplitude, phase, period, and frequency of the sinusoid: $v(t)=12 \cos \left(50 t+10^{\circ}\right)$
Solution

The amplitude is: $\mathrm{V}_{\mathrm{m}}=12 \mathrm{~V}$

The phase is : $\phi=10^{\circ}$

The angular frequency is $\omega=50 \mathrm{rad} / \mathrm{s}$
The period is: $T=(2 \pi / \omega)=(2 \pi / 50)=0.1257 \mathrm{~s}$
The frequency is $f=(1 / T)=(1 / 0.1257)=7.958 \mathrm{~Hz}$

Ex. 2 : Calculate the phase angle between

$$
\begin{aligned}
& v_{1}=-10 \cos \left(\omega \mathrm{t}+50^{\circ}\right) \& v_{2}=12 \sin \left(\omega \mathrm{t}-10^{\circ}\right) \\
& \text { state which sinusoid is leading }
\end{aligned}
$$

$$
\begin{gathered}
\text { Solution } \\
v_{1}=-10 \cos \left(\omega t+50^{\circ}\right)=10 \cos \left(\omega t+50^{\circ}-180^{\circ}\right) \\
v_{1}=10 \cos \left(\omega t-130^{\circ}\right) \\
v_{2}=12 \sin \left(\omega t-10^{\circ}\right)=12 \cos \left(\omega t-10^{\circ}-90^{\circ}\right) \\
v_{2}=12 \cos \left(\omega t-100^{\circ}\right) \\
v_{2} \text { leads } v_{1} \text { by } 30^{\circ}
\end{gathered}
$$

ÿ A complex number may be written in RECTANGULAR FORM as:

RECTANGULAR FORM

$$
\mathrm{z}=\mathrm{x}+\mathrm{jy} \quad \mathrm{j}=\sqrt{-1}, \quad \mathrm{x}=\operatorname{Re}(\mathrm{z}), \quad \mathrm{y}=\operatorname{Im}(\mathrm{z})
$$

ÿ A second way of representing the complex number is by specifying the MAGNITUDE (r) and the ANGLE (θ) in POLAR form.

$$
\begin{gathered}
\text { POLAR FORM } \\
\mathrm{z}=\mathrm{x}+\mathrm{jy}=|\mathrm{z}| \angle \theta=r \angle \theta
\end{gathered}
$$

ÿ The third way of representing the complex number is the EXPONENTIAL form.

EXPONENTIAL FORM

$$
\mathrm{z}=\mathrm{x}+\mathrm{jy}=|\mathrm{z}| \angle \theta=r e^{j \theta}
$$

- x is the REAL part.
- y is the IMAGINARY part.
- r is the MAGNITUDE.
- φ is the ANGLE.

Complex \mathfrak{N} (umbers

ÿ A complex number may be written in RECTANGULAR FORM as:

$$
\begin{array}{ll}
\mathrm{z}=\mathrm{x}+\mathrm{jy} & \mathrm{j}=\sqrt{-1} \\
x=r \operatorname{RECTANGULAR~FORM} \\
x=r & \mathrm{y}=r \sin \theta \\
\mathrm{z}=r \angle \phi & \text { POLAR FORM } \\
r=\sqrt{x^{2}+y^{2}} & \theta=\tan ^{-1} \frac{y}{x} \\
\mathrm{z}=r \mathrm{e}^{\mathrm{j} \phi} & \text { EXPONENTIAL FORM } \\
r=\sqrt{x^{2}+y^{2}} & \theta=\tan ^{-1} \frac{y}{x}
\end{array}
$$

$$
\mathrm{z}=\mathrm{x}+\mathrm{j} \mathrm{y}=r \angle \phi=r \mathrm{e}^{\mathrm{j} \phi}
$$

Complex Number Conversions

ÿ Mathematical operations on complex numbers may require conversions from one form to other form.

$$
\mathrm{z}=x+j y=r \angle \phi=r e^{j \phi}=r(\cos \phi+j \sin \phi)
$$

ÿ Converting Rectangular to Polar:

$$
\begin{gathered}
\mathrm{z}=x+j y \\
r=\sqrt{x^{2}+y^{2}}, \phi=\tan ^{-1} \frac{y}{x} \\
\mathrm{z}=r \angle \phi
\end{gathered}
$$

ÿ Converting Polar to Rectangular :

$$
\begin{gathered}
\mathrm{z}=r \angle \phi \\
x=r \cos \phi, y=r \sin \phi
\end{gathered}
$$

$$
\mathrm{z}=x+j y
$$

$$
\begin{gathered}
\text { Mathematical Operations of Complex } \\
\mathcal{N} \text { Nubers }
\end{gathered}
$$

ÿ Mathematical operations for conversions complex numbers from one form to other form.

ÿAddition and Subtraction must be on the Rectangular form.

$$
\begin{aligned}
& \text { ADDITION: } \mathrm{z}_{1}+\mathrm{z}_{2}=\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right)+\mathrm{j}\left(\mathrm{y}_{1}+\mathrm{y}_{2}\right) \\
& \text { SUBTRACTION: } \mathrm{z}_{1}-\mathrm{z}_{2}=\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)+\mathrm{j}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)
\end{aligned}
$$

ÿMultiplication and Division must be on the Polar form.
MULTIPLICATION: $z_{1} z_{2}=r_{1} r_{2} \angle \phi_{1}+\phi_{2}$
DIVISION: $\frac{\mathrm{z}_{1}}{\mathrm{z}_{2}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \angle \phi_{1}-\phi_{2}$

Adding Prasors Grapfically

ÿ Adding sinusoids of the same frequency is equivalent to adding their corresponding phasors.

$$
\mathbf{V}=\mathbf{V}_{1}+\mathbf{V}_{2}
$$

$$
\begin{aligned}
& V_{1}=V_{1} \angle-45^{\circ} \mathrm{v} \\
& V_{2}=V_{2} \angle 30^{\circ} \mathrm{v}
\end{aligned}
$$

Phasors

\ddot{y} The phasor is a complex number that carries the amplitude and phase angle information of a sinusoidal function.
\ddot{y} Phasor is the mathematical equivalent of a sinusoid with time variable dropped.
\ddot{y} Phasor will be defined from the cosine function in all our proceeding study.
\ddot{y} If a voltage or current expression is in the form of a sine, it will be changed to a cosine by subtracting from the phase.

Pfias ors

ÿPhasor representation is based on Euler's formula.
ÿEuler's formula indicates that sinusoids can be represented mathematically by the sum of two complex-valued functions

$$
\mathrm{e}^{ \pm \mathrm{j} \phi}=\cos \phi \pm \mathrm{j} \sin \phi \quad \text { Euler's Identity }
$$

$\cos \phi=\operatorname{Re}\left\{\mathrm{e}^{\mathrm{e} \phi}\right\} \quad$ Real part $\quad \sin \phi=\operatorname{Im}\left\{\mathrm{e}^{\mathrm{j} \phi}\right\} \quad$ Imaginary part
Given a sinusoid $v(t)=V_{\mathrm{m}} \cos (\omega t+\varphi)$

$$
v(t)=V_{m} \cos (\omega t+\phi)=\operatorname{Re}\left(V_{m} e^{j(\omega t+\phi)}\right)=\operatorname{Re}\left(V_{m} e^{j \phi} e^{j \omega t}\right)=\operatorname{Re}\left(\operatorname{V} e^{j \omega t}\right)
$$

$$
\mathbf{V}=V_{m} e^{j \phi}=V_{m} \angle \phi=\text { PHASOR REP. }
$$

Pfias ors

$v(t)=V_{m} \cos (\omega t+\phi)$
(Time Domain Re presentation)

$v(t)=\operatorname{Re}\left\{\mathbf{V} e^{j \omega t}\right\} \quad$ (Converting Phasor back to time)
ÿ Given the sinusoids $i(t)=I_{\mathrm{m}} \cos \left(\omega t+\varphi_{\mathrm{I}}\right)$ and $v(t)=V_{\mathrm{m}} \cos \left(\omega t+\varphi_{\mathrm{V}}\right)$ we can obtain the phasor forms as:

$$
\begin{aligned}
& \text { If } \mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\phi_{\mathrm{I}}\right) \\
& \text { If } \mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{m}} \cos \left(\omega \mathrm{t}+\phi_{\mathrm{v}}\right)
\end{aligned}
$$

$$
\text { then phasor } \quad \hat{I}=I_{m} \angle \phi_{I}
$$

then phasor $\hat{V}=V_{m} \angle \phi_{V}$

Phase Difference of a Sinusoidal Waveform

। The current, i is lagging the voltage, v by angle Φ and in our example above this is 30°.

I So the difference between the two phasors representing the two sinusoidal quantities is angle Φ and the resulting phasor diagram will be.

Ex. 3 : Transform these sinusoids to phasors:
(a) $i=6 \cos \left(50 t-40^{\circ}\right)$
(b) $v=-4 \sin \left(30 t+50^{\circ}\right)$

Solution

(a) $i=6 \cos \left(50 t-40^{\circ}\right)$

$$
\begin{array}{|ll|}
\hline \text { The phasor } \quad \mathrm{I}=6 \angle-40^{\circ} \\
\hline
\end{array}
$$

(b) $v=-4 \sin \left(30 t+50^{\circ}\right)$

$$
=4 \cos \left(30 t+50+90^{\circ}\right)
$$

$$
=4 \cos \left(30 t+140^{\circ}\right)
$$

The phasor form of v is $\quad V=4 \angle 140^{\circ}$

Ex.4: Given $i_{1}(\mathrm{t})=4 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \mathrm{A}$, and $i_{2}(\mathrm{t})=5 \sin \left(\omega \mathrm{t}-20^{\circ}\right) \mathrm{A}$, find their sum.

Solution

$$
\begin{gathered}
i_{1}(\mathrm{t})=4 \cos \left(\omega \mathrm{t}+30^{\circ}\right) \quad \text { then phasor } \mathrm{I}_{1}=4 \angle 30^{\circ} \mathrm{A} \\
i_{2}(\mathrm{t})=5 \sin \left(\omega \mathrm{t}-20^{\circ}\right)=5 \cos \left(\omega \mathrm{t}-20^{\circ}-90^{\circ}\right)=5 \cos \left(\omega \mathrm{t}-110^{\circ}\right) \\
\text { then phasor } \mathrm{I}_{2}=5 \angle-110^{\circ} \mathrm{A} \\
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}=4 \angle 30^{\circ}+5 \angle-110^{\circ}=3.464+\mathrm{j} 2-1.71-\mathrm{j} 4.698 \\
=1.754-\mathrm{j} 2.698
\end{gathered}
$$

$$
\begin{gathered}
i(t)=I_{m} \cos (\omega t+\phi)=\operatorname{Re}\left(\mathrm{I} e^{j \omega t}\right) \\
v(t)=i(t) R=R I_{m} \cos (\omega t+\phi) \\
\mathbf{V}=R I_{m} \angle \phi=R \mathrm{I}
\end{gathered}
$$

Phasor voltage and current of a resistor are in phase

Pfasor Relationsfips for Resistor

Time Domain

Frequency Domain

Phasor voltage and current of a resistor are in phase

Pfasor Relationsfips for Inductor

$$
v(t)=L \frac{d i}{d t}=L \frac{d}{d t} I_{m} \cos (\omega t+\phi)=-\omega L I_{m} \sin (\omega t+\phi)=\omega L I_{m} \cos \left(\omega t+\phi+90^{\circ}\right)
$$

$$
\mathbf{V}=\omega L I_{m} \angle\left(\phi+90^{\circ}\right)=\omega L I_{m} e^{j \phi} e^{j 90^{\circ}}=j \omega L I
$$

Where the Inductive reactance is:

$$
\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}
$$

Phasor current of an inductor LAGS the voltage by 90 degrees.

Phasor Relationships for Inductor

Time Domain

Frequency Domain

Phasor current of an inductor LAGS the voltage by 90 degrees.

Pfasor Relationsfips for Capacitor $i(t)=C \frac{d v}{d t}=C \frac{d}{d t} V_{m} \cos (\omega t+\phi)=-\omega C V_{m} \sin (\omega t+\phi)=\omega C V_{m} \cos \left(\omega t+\phi+90^{\circ}\right)$

$$
\mathbf{I}=\omega C V_{m} \angle\left(\phi+90^{\circ}\right)=\omega C V_{m} e^{j \phi} e^{j 90^{\circ}}=j \omega C \mathrm{~V} \quad \mathrm{~V}=\frac{\mathrm{I}}{\mathrm{j} \omega \mathrm{C}}
$$

Where the capacitive reactance is:

$$
\mathrm{X}_{\mathrm{C}}=\frac{1}{\omega \mathrm{C}}
$$

Phasor current of a capacitor LEADS
the voltage by 90 degrees.

Pfrasor Relationsfips for Capacitor

Time Domain

Frequency Domain

Phasor current of a capacitor LEADS the voltage by 90 degrees.

Phasor Relationships for Circuit Elements

(c)

Pfasor Relationships for Circuit Elements

